Células-tronco adultas
As CTs adultas que mais conhecemos são as presentes na medula óssea, que desde a década de 1950 são utilizadas no tratamento de diferentes doenças que afetam o sistema hematopoiético. Na medula óssea, encontram-se CTs hematopoiéticas, que podem dar origem a todos os diferentes tipos de células do sangue (linfócitos, hemácias, plaquetas, etc.). As CTs estão presentes em muitos tecidos adultos, onde atuam na manutenção dos mesmos, repondo células mortas. Porém, as CTs presentes no adulto eram vistas tradicionalmente como restritas em seu potencial de diferenciação a somente células do tecido onde elas residem. Por exemplo, as CTs hematopoiéticas são capazes de regenerar o sangue após destruição daquele tecido por irradiação, e células do fígado proliferam na tentativa de regenerar aquele órgão.
Porém, nos últimos anos, uma série de trabalhos vem questionando essa visão tradicional das CTs adultas, mostrando indicações de um potencial muito mais amplo de diferenciação, sendo capazes de dar origem a tecidos diferentes daqueles onde elas residem. Alguns deles serão discutidos a seguir.
Uma das primeiras indicações de que as CTs da medula óssea poderiam se diferenciar em tecidos diferentes do hematopoiético veio de um estudo com um modelo animal para distrofia muscular de Duchenne, doença muscular degenerativa causada por mutações no gene da distrofina, uma proteína da parede muscular. Animais afetados, ou seja, que não produzem a distrofina, foram submetidos a um transplante de medula óssea de camundongos normais. Além de terem sua medula óssea regenerada pelas células do doador, algumas semanas após o transplante, os animais transplantados apresentaram até 10% das fibras musculares contendo aquela proteína. Isto indicava que células derivadas da medula óssea do doador haviam se incorporado ao músculo dos animais distróficos.
Dois anos mais tarde, outro grupo conseguiu demonstrar que na medula óssea do camundongo existem células com uma enorme capacidade de diferenciação in vivo. Quando injetadas em camundongos receptores, estas CTs derivadas da medula óssea se diferenciaram em células epiteliais do fígado, pulmão, trato gastrointestinal e pele, além é claro de células hematopoiéticas no receptor. Este trabalho representou uma grande quebra de paradigma, e levou vários grupos a explorarem a capacidade terapêutica das CTs da medula óssea em doenças não hematológicas.
Neste sentido, uma das áreas mais exploradas tem sido a cardiologia. Estudos pré-clínicos com modelos animais avaliaram a capacidade terapêutica das células da medula óssea no tratamento de infarto do miocárdio induzido. Quando injetadas na parede do infarto logo após a ligação da coronária, as CTs de medula óssea promoveram a formação de novo músculo cardíaco que ocupava até 68% da porção infartada do ventrículo. Esse trabalho indicou que a administração local de células da medula óssea pode levar à geração de novo miocárdio, aliviando o efeito da doença coronária.
Os resultados do uso de CTs da medula óssea em cardiopatias em modelo animais justificaram o início de testes em seres humanos. Em um trabalho desenvolvido numa parceria entre a UFRJ, o Hospital Pró-Cardíaco e a Universidade do Texas, catorze pacientes com doença isquêmica grave do coração receberam injeções de células de sua própria medula óssea diretamente no coração. Os resultados mostraram uma melhora significativa da função contrátil nos pacientes tratados quando comparados com controles após quatro meses do tratamento. Em 2005, foi iniciado no Brasil um teste clínico em larga escala, financiado pelo Ministério da Saúde, onde 1.200 pacientes com diferentes cardiopatias receberão injeções locais de células mononucleares derivadas da própria medula óssea. O estudo pretende avaliar a segurança e eficácia deste tratamento para eventualmente oferecê-lo à população como uma alternativa ao transplante cardíaco.
Apesar destes e outros trabalhos indicarem uma maior plasticidade das CTs da medula óssea, incluindo também a capacidade destas células se diferenciarem em neurônios e hepatócitos, ainda não está claro se de fato aquelas células estão se transformando em outros tecidos ou se simplesmente estão se fundindo com células daqueles tecidos. Outros trabalhos, ainda, propõem um terceiro mecanismo para o efeito terapêutico das CTs da medula óssea, onde estas estariam secretando fatores que induziriam um processo natural de regeneração do órgão afetado. Fato é que o mecanismo pelo qual as CTs adultas exercem o efeito terapêutico observado em algumas doenças não hematológicas ainda não é conhecido e é tema de controvérsia na comunidade científica.
Enquanto a controvérsia não é resolvida, alguns estudos apresentam evidências indiretas da capacidade de diferenciação mais ampla das células da medula óssea em humanos. Por exemplo, mulheres com leucemia que receberam transplante de medula óssea de doadores homens apresentaram células contendo o cromossomo Y (ou seja, derivadas da medula óssea do doador) em seu cérebro. Além disso, uma pequena proporção (até 0,07%) havia se diferenciado em neurônios. Esse trabalho demonstrou a capacidade, ainda que com baixa eficiência, das células da medula óssea de entrar no cérebro e gerar neurônios, fenômeno também observado em camundongos. Se esta capacidade puder ser aumentada, um dia as CTs de medula óssea poderão ser utilizadas no tratamento de doenças neurodegenerativas, como Parkinson e Alzheimer.
Terapia celular com CT adultas
Transplantes de células-tronco adultas são realizados desde a década de 1950 na forma de transplantes de medula óssea para o tratamento de diferentes doenças que afetam o sistema hematopoiético. A partir do final da década de 1980, o sangue do cordão umbilical e placentário de recém-nascidos tornou-se uma fonte alternativa de CTs hematopoiéticas - no recém-nascido, essas células ainda não migraram para o interior dos grandes ossos e se encontram no sangue circulante com algumas vantagens sobre a medula óssea: não necessita de uma compatibilidade completa entre doador e receptor; apresenta menor risco de desenvolvimento da doença do enxerto versus hospedeiro; e está disponível imediatamente quando necessário, ao contrário dos bancos de medula óssea, que armazenam somente dados sobre o doador. Mais recentemente, o transplante de SCUP vem sendo utilizado também para o tratamento de doenças não hematológicas, especificamente as doenças genéticas do metabolismo síndrome de Hurler e da doença de Krabbe, esta última uma condição neurodegenerativa.
Em 1993, foi inaugurado o primeiro banco de sangue de cordão para uso público nos Estados Unidos (New York Blood Center, Nova Iorque, Estados Unidos ) para complementar os bancos de doadores de medula óssea. Atualmente, os Estados Unidos possuem mais de sessenta mil amostras de sangue de cordão armazenadas para uso público, e pretendem atingir uma meta de 150 mil amostras para poder atender toda sua população.
No Brasil, o Instituto Nacional do Câncer (INCA) foi pioneiro na criação de um banco público de sangue de cordão em 2001. Segundo o site do INCA, hoje a capacidade deste banco é de três mil unidades de sangue de cordão, que deve ser expandida até dez mil amostras. Em 2004, foi criada pelo Ministério da Saúde uma rede nacional de bancos de sangue de cordão (Rede BrasilCord), composta inicialmente pelo INCA, Hospital Israelita Albert Einstein (HIAE), Hemocentro de Ribeirão Preto e UNICAMP. Segundo o site do HIAE, a Rede BrasilCord tem como objetivo a coleta de vinte mil amostras de sangue de cordão para uso público, o que "atenderá a toda a diversidade genética da população brasileira [...]". Não é claro como este número foi calculado, mas levando-se em conta bancos de sangue de cordão de países como Japão, que até 2006 já tinha vinte mil amostras para atender sua população significativamente mais homogênea do que a nossa, acredito que vinte mil seja uma estimativa muito baixa para a Rede BrasilCord ter algum impacto em saúde pública no Brasil.
Apesar de muito empenho e divulgação, até julho de 2007 somente o INCA e o HIAE atuavam como bancos de sangue de cordão, o que significa que somente partos realizados na Maternidade Municipal Carmela Dutra e na Pró Matre no Rio de Janeiro, e no HIAE em São Paulo são passíveis de terem o sangue de cordão do recém-nascido doado para a Rede BrasilCord. E enquanto as maternidades participantes no Rio de Janeiro atendem a população geral, diversificada, daquela cidade, a única maternidade atuante no Estado de São Paulo, a do HIAE, atende principalmente uma classe econômica que pode arcar com o alto custo de um parto ali. Conseqüentemente, a variabilidade étnica das amostras daquele banco de cordão deve ser muito baixa e não representar toda a diversidade genética da nossa população. Assim, em termos de saúde pública, seria mais eficiente as coletas de sangue de cordão para a Rede BrasilCord serem sempre feitas em maternidades que atendam a diversidade étnica/genética da população brasileira. A iniciativa da criação da rede de bancos públicos no Brasil é de extrema importância para a saúde de nossa população, mas para que tenha de fato impacto, ela deve contemplar a natureza diversificada de nossa população, o que deve se refletir na escolha dos pontos de coleta e em um cálculo realista da meta de número de amostras armazenadas.
Mas e o uso de CTs para o tratamento de doenças mais comuns? O Brasil se destaca pelo grande número de testes clínicos em andamento com CTs adultas, que avaliam o uso terapêutico mais amplo destas células em diferentes doenças, incluindo doenças cardíacas, auto-imunes, como lúpus e diabetes e trauma de medula espinhal. Estes estudos estão em andamento e os resultados preliminares indicam que pelo menos não há efeitos adversos do transplante autólogo de CTs da medula óssea. Resta ainda analisarmos se existe algum efeito terapêutico das mesmas naquelas doenças. É importante frisar que os esses tratamentos são experimentais e ainda não podem ser oferecidos à população.
Finalmente, novas fontes de CTs adultas vêm sendo caracterizadas e incluem material lipoaspirado e a polpa do dente de leite. Ainda é cedo para sabermos quais dessas células cumprirão sua promessa terapêutica, mas elas ilustram o quanto ainda temos que aprender sobre os diferentes nichos de CTs no organismo adulto.
Nenhum comentário:
Postar um comentário